Stereo- and Enantio-controlled Synthesis of (+)-Juvabione and (+)-Epijuvabione from (+)-Norcamphor

Mitsuhiro Kawamura and Kunio Ogasawara*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

(+)-Juvabione and (+)-epijuvabione, natural sesquiterpenes exhibiting insect juvenile hormone activity, have been synthesized with complete stereo- and enantio-control using (+)-norcamphor as the chiral precursor *via* both the enantiomeric bicyclo[3.2.1]octenone intermediates.

Convex face selective introduction of an electrophile to 2-oxabicyclo[3.2.1]octan-3-one **2**, obtained by oxidation of norcamphor **1**, is well established.¹ It is, however, very difficult to retain the original stereoselectivity owing to facile epimerization under the basic conditions employed.² We, therefore, prepared optically active bicyclo[3.2.1]oct-3-en-2-one³ **4** so as to prevent epimerization *via* the convex face selective 1,4-nucleophilic addition pathway (Scheme 1). Here we report a preparation of both enantiomeric forms of bicyclo[3.2.1]oct-3-en-2-one **4** from the same (+)-norcomphor² **1** and their complete stereocontrolled conversion into (+)-juvabione **23** and (+)-epijuvabione **29**, natural sesquiterpenes exhibiting selective insect hormone activity,^{4,5} employing convex face selective 1,4-addition as a key step.

(+)-Norcamphor[†] 1, presently the only commercially available enantiomer, was easily converted into the silyl enol ether⁶ 6. Compound 6 was then treated with diiodomethane and diethyl zinc⁷ to stereoselectively give the cyclopropane 7 in excellent yield. On treatment with iron(III) chloride in dimethylformamide,⁷ compound 7 afforded directly (+)-bicyclo-[3.2.1]oct-3-en-2-one[‡],§ 4, $[\alpha]_D^{33} + 359.2$ (c 1.64, CHCl₃), [lit.,^{3b}: + 334 (c 1.1, CHCl₃), 93% ee], in excellet yield with concomitant dehydrochlorination of the transient β -chloroketone intermediate 8. To invert the stereochemistry,⁸ (+)-4 was first treated with alkaline hydrogen peroxide to stereo-

Scheme 2 Reagents and conditions: i, Me₃SiCl, LDA THF; ii, CH₂I₂, Et₂Zn, Et₂O (94% from 1); iii, FeCl₃, DMF, 85%; iv, 30% H₂O₂, MeOH, NaOH (1 mol dm⁻³) 97%; v, NH₂NH₂·H₂O, AcOH (cat.), MeOH, 72%; vi, Dess-Martin periodinate oxidation, 81%

selectively give the *exo*-epoxide **9**, $[\alpha]_D{}^{31} + 31.1$ (*c* 1.71, CHCl₃). Compound **9** was then treated with hydrazine hydrate, followed by the Dess–Martin periodinate⁹ to give the enantiomeric (–)-enone **4**, $[\alpha]_D{}^{29} - 346.2$ (*c* 1.55, CHCl₃), in 57% overall yield *via* the allyl alcohol **10**, $[\alpha]_D{}^{33} - 207.5$ (*c* 1.48, CHCl₃) [lit:^{3a} + 219 (*c* 0.6, CHCl₃) for the (+)-enantiomer] (Scheme 2).

To demonstrate its convex face selectivity, we chose two epimeric natural sesquiterpenes (+)-juvabione **23** and (+)-epijuvabione **29** as target molecules whose stereocontrolled construction is known to be exceedingly difficult.^{4a} The present synthesis of (+)-juvabione **23** began with 1,4-addition of the Grignard reagent to (+)-enone **4** to selectively give the methyl product (+)-**5a**, $[\alpha]_D^{23} + 136.7$ (*c* 1.14, CHCl₃) [lit.,^{3b} + 124

Scheme 3 Reagents and conditions: i, MeMgI, CuCN, LiCl, THF, 92%; ii, MCPBA, CH₂Cl₂; iii, MeNHOMe·HCl, Me₃Al, CH₂Cl₂ (86% after separation); iv, PrⁱCH₂MgCl, THF, 70%; v, (CH₂OH)₂, *p*-toluenesulfonic acid (p-TsOH), benzene, 91%; vi, pyridinium chlorochromate (PCC), NaOAc, CH₂Cl₂, 94%; vii, pyrrolidine then TsS(CH₂)₃STs, 70%; viii, KOH, acid workup, then CH₂N₂, 92%; ix, diisobutylaluminum hydride, then (CH₂OH)₂, *p*-TsOH, benzene, 77%; x, Hg(ClO₄)₂, CaCO₃, then NaBH₄, 83%; xi, I₂, PPh₃; imidazole; xii, (MeO)₂P(O)CH₂CO₂Me, NaH, 18-crown-6-MeCN, DMF (94% from **19**); xiii, aq. TFA; xiv, LiCl, DBU, MeCN (57% from **21**)

(c 2.3, CHCl₃), 93% ee]. Although the Baeyer-Villiger oxidation did not occur regioselectively, (+)-5a afforded a mixture of lactones, mostly consisting of the desire 11 in nearly quantitative yield. The mixture was then treated, without separation with a complex¹⁰ generated in situ from Nmethoxymethylamine hydrochloride and trimethylaluminium in dichloromethane to give the hydroxamate 12, $[\alpha]_D^{28} + 11.5$ (c 1.10, CHCl₃), in 86% yield after separation of the undesired isomer, $[\alpha]_D^{30}$ – 3.5 (c 1.04, CHCl₃), in 9% yield. Treatment of 12 with the Grignard reagent¹⁰ gave the ketone 13, $[\alpha]_D^{31} - 3.9$ (c 1.02, CHCl₃), which after ketalization was oxidized to the cyclopentanone 15, $[\alpha]_D^{31}$ + 97.3 (c 1.15, CHCl₃), via the alcohol 14, $[\alpha]_D^{30} + 4.7$ (c 1.13, CHCl₃). Treatment of 15 with trimethylene dithiotosylate¹¹ furnished regioselectively the α diketone monothioketal 16, $[\alpha]_D{}^{31}$ -68.2 (c 1.21, CHCl₃), which on cleavage¹² followed by esterification furnished the dithian-ester (+)-17, $[\alpha]_D^{31}$ +0.1 (c 1.10, CHCl₃), in 39% overall yield from 12. The ester 17 was partially reduced, followed by acetalized, to give the bis-dioxolane 18, $[\alpha]_D^{30}$ -1.3 (c 1.94, CHCl₃), whose dithian functionality was sequentially hydrolysed¹³ and reduced to give the primary alcohol 19, $[\alpha]_{D}^{30}$ -9.2 (c 1.04, CHCl₃). The alcohol 19 was first transformed¹⁴ into the iodide 20 which was then coupled with the phosphonate¹⁵ to give the ester **21**, $[\alpha]_D^{30} - 1.2$ (*c* 0.61, CHCl₃), in 60% overall yield from 17. Finally, 21 was acidhydrolysed to give the keto-aldehyde 22 which was immediately subjected to intramolecular Horner-Emmons reaction¹⁶ to give (+)-juvabione¶ **23** $[\alpha]_D^{27}$ +65.2 (*c* 0.46, benzene) $[lit:^{17} [\alpha]_D^{25} + 65.09 (c \ 0.89, benzene)], in 57\% yield.$

(+)-Epijuvabione 29 was synthesized starting with the same 1,4-addition reaction of the enantiomeric (-)-enone 4 to give the enantiomeric *exo*-methyl product (-)-5a, $[\alpha]_D{}^{31}$ -129.8 (c 0.82, CHCl₃). Exactly the same way as for the (+)-enantiomer, (-)-5 was converted into the enantiomeric dithian-ester (-)-17 in a comparable overall yield. On stirring with bis(trifluoroacetoxy)iodobenzene in methanol,¹⁸ (-)-17 furnished the dimethyl acetal 24 by methanolysis of the dithian functionality. The ester group of 24 was then reduced to give the

vii ____ 28 R = CH₂CHP(O)(OMe)₂CO₂Me, X = Y = O

Scheme 4 Reagents and conditions: i, MeMgI, CuCN, LiCl, THF, 88%; ii, see Scheme 3; iii, PhI(OCOCF₃)₂, MeOH; iv, LAH, THF (67% from 17); v, I₂, PPh₃, imidazole, 89%; vi, (MeO)₂P(O)CH₂CO₂Me, NaH, 18-crown-6-MeCN, DMF, 92%; vii, aq. TFA; viii, LiCl, DBU, MeCN (64% from 27) primary alcohol **25** $[\alpha]_D{}^{31}$ -6.1 (*c* 1.06, CHCl₃), which was transformed into the phosphonate ester **27**, $[\alpha]_D{}^{31}$ +5.3 (*c* 1.21, CHCl₃), *via* the iodide **26** as above. Finally, **27** was sequentially hydrolysed and cyclized as above to yield (+)-epijuvabione **29**, $[\alpha]_D{}^{32}$ +96.3 (*c* 0.81, benzene)[lit:¹⁷ $[\alpha]_D{}^{25}$ -94.14 (*c* 0.64, benzene) for (-)-enantiomer] *via* the keto-aldehyde **28**. Overall yield of the natural product **29** from **17** was 35%.

In conclusion, we have succeeded in converting (+)-norcamphor into bicyclo[3.2.1]oct-3-en-2-one in both its enantiomeric forms. Owing to its biased and rigid structure, the latter allowed convex face selective nucleophilic 1,4-addition leading to stereocontrolled construction of (+)-juvabione from the (+)-enantiomer in 10% overall yield and (+)-epijuvabione from the (-)-enantiomer in 18% overall yield.

Received, 25th August 1995; Com. 5/05647K

Footnotes

 \dagger Prepared from (+)-endo-norborneol, kindly provided by Chisso Corporation, Japan, in *ca.* 95% ee.

[‡] Satisfactory analytical (combustion and/or high resolution mass) and spectral (IR, ¹H NMR, and MS) data were obtained for all new compounds.

Optical purity was determined to be >95% ee by HPLC analysis using a chiral column (CHIRALCEL OB, elution: PrOH-hexane 1:200).

¶ Optical purity was determined to be >95% ee by HPLC analysis using a chiral column (CHIRALCEL OB, elution: PriOH-hexane 1:100).

References

- 1 For example, S. Takano, K. Masuda, S. Hatakeyama and K. Ogasawara, *Heterocycles*, 1982, 19, 1407.
- 2 For example, M. Kawamura and K. Ogasawara, *Tetrahedron Lett.*, 1995, **36**, 3369 and references cited therein.
- (a) H. L. Goering and D. L. Towns, J. Am. Chem. Soc., 1963, 85, 2295.
 (b) H. L. Goering and S. S. Kantner, J. Org. Chem., 1981, 46, 4605.
- 4 Pertinent reviews, see: (a) C. H. Heathcock, S. L. Graham, M. C. Pirrung, F. Plavac and C. T. White, *Total Synthesis of Natural Products*, ed. J. ApSimon, Wiley, 1983, Vol. 5, 1. (b) B. M. Fraga, *Nat. Prod. Rep.*, 1995, **12**, 303 and former reports.
- 5 A recent example of synthesis of (+)-juvabione, see: H. Watanabe, H. Shimizu and K. Mori, *Synthesis*, 1994, 1249.
- 6 V. Patel, A. J. Ragauskas and J. B. Stothers, Can. J. Chem., 1986, 64, 1440.
- 7 Y. Ito, S. Fujii, M. Nakatsuka, F. Kawamoto and T.Saegusa, Org. Synth. Col. Vol., 1988, 6, 327; R. M. Moriarty, R. K. Vaid, T. E. Hopkins, B. K. Vaid and O. Prakash, *Tetrahedron Lett.*, 1990, 31, 197.
- 8 Cf. S. Takano, K. Inomata and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1989, 271.
- 9 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4156; J. Am. Chem. Soc., 1991, 113, 7277.
- 10 S. Nahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815.
- 11 R. B. Woodward, I. J. Pachter and M. L. Scheinbaum, Org. Synth. Col. Vol., 1988, 6, 1014; S. Takano, K. Hiroya and K. Ogasawara, Chem. Lett., 1983, 255.
- 12 J. A. Marshall and D. E. Seitz, J. Org. Chem., 1974, **39**, 1814; A pertinent review, see: S. Takano and K. Ogasawara, J. Synth. Org. Chem., Jpn., 1977, **35**, 795.
- 13 R. Bernardi and D. Ghiringhelli, J. Org. Chem., 1987, 52, 5021.
- 14 P. J. Garegg and B. Samuelsson, J. Chem. Soc., Chem. Commun., 1979, 978.
- 15 M. A. Tius and A. H. Fauq, J. Am. Chem. Soc., 1986, 108, 1035.
- 16 M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush and T. Sakai, *Tetrahedron Lett.*, 1984, 25, 2183.
- 17 B. A. Pawson, H.-C. Cheung, S. Gurbaxani and G. Saucy, J. Am. Chem. Soc., 1970. 92, 336.
- 18 G. Stork and K. Zhao, Tetrahedron Lett., 1989, 30, 287.